

ROS Based Husky
Humanization Report

Cameron Pepe, Jack Lafiandra, Tyler Lee
CS 2699

Cedric Pradalier
5.5.17

Jack Lafiandra, Cameron Pepe, Tyler Lee

CS 2699 - Husky Robotics Research

Table of Contents

Title Page …………………………………………………………………… 1
Table of Contents …………………………………………………………………… 2
Overview …………………………………………………………………… 3
Running the System …………………………………………………………………… 4
Command List …………………………………………………………………… 5 - 6
Node Plot …………………………………………………………………… 7
Speech Recognition …………………………………………………………………… 8 - 10
Face Recognition …………………………………………………………………… 11 - 12
Kinova Arm Control …………………………………………………………………… 13 - 14
Conclusion …………………………………………………………………… 15

2

Jack Lafiandra, Cameron Pepe, Tyler Lee

CS 2699 - Husky Robotics Research

Overview
The goal of the project was to integrate three separate phases on the Husky robot to create a
human interactive demo. The three entities are face detection/camera movement, Konova
arm movement, and speech recognition/voice response which are implemented and connect
on the open source ROS framework. The idea behind the demo would be to give a voice
command, have the camera provide input, and the arm to gesture in response.

Initially, the three group members gained familiarity with the ROS ecosystem and then
starting using pre-built packages to finally build individual scripts that communicate via ROS
topics with publishers and subscribers. The commands were fleshed out among the group
members which are identified by number (See list below). For example, stop is the base
orientation - robot stops all execution, goes to default position for instruments, and any
further command can be executed from this state.

In designing commands, three levels were created - beginner, intermediate, advanced - with
the goal being to successfully execute all beginner commands, most of intermediated, and
test the waters with advanced. With a semester to accomplish these tasks, the results were
positive overall.

3

Jack Lafiandra, Cameron Pepe, Tyler Lee

CS 2699 - Husky Robotics Research

Running the System
To execute all three components of the project at once, simply run the following command
with the ROS master running:

roslaunch ~/husky_dream/src/face_rec/launch/husky_demo.launch

The launch file is a bit confusing as one terminal doesn’t show much debugging,
recommendations is to run each part separately.

4

Jack Lafiandra, Cameron Pepe, Tyler Lee

CS 2699 - Husky Robotics Research

Commands List

Audio Command Audio Response Camera Arm Response Robot
Movement

0 Stop “Stopped” Stop all
computing

Stop moving Stop moving

1 Home “Going home” Move to default
position, Look
for faces

Move to default
position

Stop moving

2 Wave “Hello” Output
coordinates to
closest face

Wave (generic
arm movement)

Turn to face user

3 Point “Pointing…” Output
coordinates to
closest face

Point at user Turn to face user

4 Greeting “What is your
name?”
“Hello <name>”

Output
coordinates to
closest face

 Turn to face user

5 Knuckles “Knuckles

Output
coordinates to
closest face

Orient for
knuckles

Turn to face user

6 High five “High five” Output
coordinates to
closest face

Orient for high
five

Turn to face user

 7 Turn Left “Turning left” Turn 90 degrees
left

8 Turn Right “Turning right” Turn 90 degrees
right

9 Look Left “Camera turned
left”

Hard code turn
to angle on left
side

10 Look Right “Camera turned
right”

Hard code turn
to angle on right
side

11 Handshake “Shake my hand” Align robot to
user

Handshake,
slight grip, up
and down

Turn to face user

5

Jack Lafiandra, Cameron Pepe, Tyler Lee

CS 2699 - Husky Robotics Research

movement

12 Come to me “Here” Tracks where
user is

 Turn to face
user, move to
user, stop in
front of user

13 Follow me “Following…” Tracks where
user is

Point at user
that we’re
following

Follows user,
continuously
turning to face
them

14 Hand me
something

“Give it to me”
“Thanks”

Align robot to
user

Extend open
arm, grasp
object

Turn to face user

15 Come take this “Coming…”
“Give it to me”
“Thanks”

Track where user
is, align robot to
user

Extend open
arm, grasp

Turn to face
user, move to
user, stop in
front of user

16 Find Color
(“R/G/B”)

“Searching for
color <RGB>”
“Pointing…”

Find Color, align
robot to color

Point Arm Turn to face
color

17 Pick something
up?
(spooky hard
one)

 Find object,
orient robot to
put object in
position

Pick up object

18 Say Hello “Hello <name>” Facial
recognition of
known
individuals

Wave Turn to face user

*Not all boxes in the table are filled in

6

Jack Lafiandra, Cameron Pepe, Tyler Lee

CS 2699 - Husky Robotics Research

Node Plot

7

Jack Lafiandra, Cameron Pepe, Tyler Lee

CS 2699 - Husky Robotics Research

Speech Recognition/Response
The speech recognition component of the project relies on the open source Carnegie Mellon
University codebase known as Sphinx[1]. Sphinx utilizes a user built dictionary (*.dic) of
individual word pronunciations alongside a timing file (*.kwlist) for each word/phrase.
Carnegie Mellon provides a web resources for word look up in English[2]. Dictionaries can also
be created in other languages although command line resources will have to be downloaded
to build the language models. I was personally able to obtain timings for the commands from
our list based on examples for Sphinx usage. Finally, Sphinx requires a language model object,
the wide majority of which can be found here[3]. These files and objects will need to be
referenced in the ROS script, however I set default paths in my script to allow ease of
switching between languages via command line arguments.

Sphinx is designed to work with any project in mind, and implementing the system on ROS
requires two main packages. The first is Pocketsphinx which is a lightweight sphinx-based
voice recognition system meant for smaller, less powerful devices. The second is the python
pocketsphinx, a python wrapper which I utilized for ease of use with ROS. Both packages can
be found in the cmusphinx Github repository[1].

User input via the onboard microphone also required the pyaudio package which is installable
via pip:

pip install pyaudio
I encountered a major error at this point due to a missing “portaudio.h” file which can
sometimes be fixed via

sudo apt-get install portaudio19-dev
Or online sources[4] as was required for me.

There were quite a few other packages required for execution. Gstreamer is required by
sphinx and packages can be installed via the Aptitude package manager.

sudo apt install gstreamer<latest version><plugins>
In my implementations, I found the good and bad plugin packages were also necessary for
sphinx to compile, your mileage may vary. Swig is a translating package written to allow C files
to be accessed in python and other scripting languages. It comes with most version of linux
although I had to install it from source. The latest release can be found here[5]. Lastly, I was
required to install Bison[6] for language parsing which can be installed via the following
commands:

wget http://ftp.gnu.org/gnu/bison/bison-2.3.tar.gz
tar -xvzf bison-2.3.tar.gz
cd bison-2.3
./configue

make

sudo make install

8

http://ftp.gnu.org/gnu/bison/bison-2.3.tar.gz

Jack Lafiandra, Cameron Pepe, Tyler Lee

CS 2699 - Husky Robotics Research

To keep things organized I created a folder to house source code for packages in case
reinstallation became necessary as well as to house the language model and files. The folder I
created is named “audio_ros_research” and can be found in the home directory of the Husky
robot. For a multi-user system it would be better to place the model and files in the “/share”
folder. My script’s current defaults point to this location. The model can also be placed in the
ROS package which I avoided to ensure ROS would still make in all future versions.

My speech recognition script publishes two topics, “voice_command_int” and
“voice_command_str” which correlate directly to the command lists numbers (..._int) and
command name (..._str) documented above. When a phrase is understood, the result is sent to
the both the arm and the camera via the integer topic to execute the proper response, the
string is largely for ease of debugging and testing.

I ran tests on a voice response system using the audio common ROS package which includes a
say.py wrapper script that takes command line string arguments and has a speech output. It
works as developed with any string, but the response is extraordinary robotic due to the
nature of concatenating sounds to create words. In my tests, I attempted to use modified
strings in order to have the proper sound output for the desired word. I began modifications
to work via subscriber access as well as searching for an alternative voice response system,
but was unable to finish due to time constraints.

My catkin package is named “voice_controller” and is located at

~/husky_dream/src/voice_controller

with scripts specifically in the “scripts” folder and launch files in the “launch” folder within the
package.

The main script can be run via the following command once the catkin make has been
performed.

rosrun voice_controller husky_voice_controller_v2.0.py

Speech recognition is a tricky task even with the well build libraries I utilized. Initial tests
realized about 80% accuracy on my personal device with a quality built in microphone and
minimal optimization. After completing the setup on the husky, I was seeing around 60%
accuracy, although with adjustments to the microphone this dramatically improved as well as
additionally removing some of the background noise in the lab. I also found revising some of
the commands for clarity amongst the words helped; for instance “Halt” was changed to
“Stop” to avoid confusion with “Home”. I also spent time adjusting the phrase timing values
with a net result of about 90% accuracy. My biggest dilemma is that constantly listening
results in attempts to find words/phrases is regular conversation not meant to be robot
commands, although with a more directional microphone this problem could also be
mitigated.

The codebase for my implementation can be found on my Github[7].

9

Jack Lafiandra, Cameron Pepe, Tyler Lee

CS 2699 - Husky Robotics Research

Sources
[1] https://github.com/cmusphinx
[2] http://www.speech.cs.cmu.edu/cgi-bin/cmudict
[3]
https://sourceforge.net/projects/cmusphinx/files/Acoustic%20and%20Language%20Models/
[4] http://www.portaudio.com/docs/v19-doxydocs/portaudio_8h_source.html
[5] http://www.swig.org/download.html
[6] https://www.gnu.org/software/bison/
[7] https://github.com/tlee753/husky-robotics-research

10

https://www.gnu.org/software/bison/
https://github.com/tlee753/husky-robotics-research
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
https://github.com/cmusphinx
https://sourceforge.net/projects/cmusphinx/files/Acoustic%20and%20Language%20Models/
http://www.portaudio.com/docs/v19-doxydocs/portaudio_8h_source.html
http://www.swig.org/download.html

Jack Lafiandra, Cameron Pepe, Tyler Lee

CS 2699 - Husky Robotics Research

Face Tracking/OpenCV/Camera

The program can be run by calling

roslaunch face_rec face_rec_bag.launch
The facial tracking and camera control work primarily with two libraries: OpenCV for image
processing and facial detection and Axis for camera input and output. The OpenCV2 and Axis
packages are installed in the ROS libraries on the Husky robot.

There are two scripts that I wrote that works with these two libraries: face-rec-axis.cpp and
output-action.cpp.
Face-rec-axis subscribes to /axis/image_raw (the output image of the Axis camera), and
publishes to /faceROI (the region of interest in the image designating a face, in pixels). The
program uses OpenCV to scan the video image for faces and stores the locations of the faces
in a vector. It then publishes the region of interest of the largest face (by pixel size) to the
topic /faceROI. The biggest issue run into with this script is the low frame rate and low image
resolution of the camera. The lack of sophistication of the facial detection through OpenCV
also posed an issue because, for example, a face turned at an angle would not be detected
and sometimes an inanimate object would be recognized as a face for a single frame. Due to
the low frame rate and low resolution of the camera, I was unable to avoid this issue
altogether, only mitigate its effects on the rest of the program.

Output-action subscribes to:

● /faceROI (published by face-rec-axis.cpp)
● /axis/camera_info (the technical and computer vision information of the Axis

camera including the intrinsic camera matrix)
● /axis/state (pan, tilt, and zoom information from the Axis camera)
● /voice_command_int (published by Tyler’s speech recognition program containing

which command was given by voice)
The program publishes to

● /axis/cmd (the command for the Axis camera including the pan, tilt, and zoom
(among other) command).

● /faceLoc (the information about the location of the face in terms of angles for Jack
to use for arm operations.

The program reads the information provided by face-rec-axis on /faceROI (the location of the
face in the current image) and, using the intrinsic matrix of the camera, calculates the angle
that the person’s face is relative to the center of the image. The angle in the x (horizontal) and
y (vertical) directions are relative to the standard cartesian coordinate axis of the image.
These angles become the pan and tilt variables (with some variated scaling based on the
current zoom of the camera) in the command message to the camera. If both the x and y
variables are within a threshold (10 degrees), then the zoom variable is increased. This
message is published to /axis/cmd. The camera reads this topic and adjusts its pan, tilt, and
zoom variables accordingly. This works to move the camera so that the person’s face is in the

11

Jack Lafiandra, Cameron Pepe, Tyler Lee

CS 2699 - Husky Robotics Research

center of the image. When the face is within 10 degrees of the center of the camera, the
zoom is increased until the face is roughly 1/7 the screen’s width. Once the camera is zoomed
in on the person’s face, it continues to track the person’s face and adjust the pant and tilt
variables accordingly. The size 1/7 was found to be a good mix of size and ability to continue
to track faces with the low frame rate.
If the camera is zoomed in and a person’s face cannot be found in the image for over 1
second, the camera begins to zoom out. The speed at which it zooms is scaled by the time
since the last face was found. After 3 seconds without finding a face (receiving a message on
the /faceROI topic), the camera resets to a pseudo-base position. It maintains the same pan
angle but adjusts the tilt angle to 10 degrees and resets the zoom to 1 (all the way zoomed
out). After 5 seconds without finding a face, the camera begins to scan its area for faces. The
camera pans from -60 degrees to 60 degrees (0 degrees being directly in front of the husky) at
roughly 5 degrees a second. Once a face is found, the scan state is exited and focuses on the
face it found (going back to the first step).
If the voice command “stop”, “home”, “look right”, or “look left” is detected (Tyler’s part):

● Stop - Stop the camera where it is, (keep the same pan, tilt, and zoom) until another
voice command of any type is detected

● Home - Reset the camera’s position to face directly in front of the husky
● Look Right - set the camera’s position to face 45 degrees to the right of the husky
● Look Left - set the camera’s position to face 45 degrees to the left of the husky

Sources

● http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html
● https://github.com/cedricpradalier/axis_camera

12

https://github.com/cedricpradalier/axis_camera
http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html

Jack Lafiandra, Cameron Pepe, Tyler Lee

CS 2699 - Husky Robotics Research

Arm Movement

The main program can be run by calling

rosrun ArmController controller.py

ArmController subscribes to:
● /faceLoc (published by Cameron)

○ Face = whether a face is present
○ Theta x
○ Theta y

● /voice_command_int (published by Tyler)

The arm controller works primarily with the Kinova drivers, so the program will never run
correctly without first launching the drivers, which can be done by doing this command in the
command line:

roslaunch kinova_bringup kinova_robot.launch
kinova_robotType:=j2n6a300

The entire Arm Movement works through a series of python scripts located under
ArmController/scripts. The primary script is controller.py which use a robot object from
robot.py, which has a method called command which determines which command needs to be
executed. The command function takes in two parameters, the first being an integer from the
Speech Recognition that corresponds to a key phrase, while the other parameter consists of
theta x from Cameron’s Face tracking. The command function will then activate one of the
scripts either jointvel.py(wave functionality) and jointpos.py(point functionality). The point
functionality will locate a face and then point directly towards the person, while the wave
functionality will wave in front of the robot. Another important function is the service call for
the arm, used with

rosservice call /in/j2n6a300_driver/home_arm

Be careful when using this though, because it can run into any obstacles on the way home.
The problems that I ran into when working on this project are a few, the first one that comes
to mind is that the Kinova-ros drivers and the VRep drivers are quite different in actuality;
Vrep gives you a good idea for proof of concept, but the actual execution is much different in
how they are coded, with Kinova using JointVelocity while Vrep using jointcommand. Another
large problem while coding was that quite a bit of functionality in the kinova-ros package is
still being developed from what I understand. Particularly, absolute joint_angles would cause
the arm to often flail randomly, and often times it would have to be shut off. Furthermore,
Cartesian control did not work very well, it did work, but it was incredibly slow and somewhat
glitchy in the movement sector.

13

Jack Lafiandra, Cameron Pepe, Tyler Lee

CS 2699 - Husky Robotics Research

Sources
● https://github.com/xwu4lab/kinova-ros
● https://github.com/xwu4lab/jaco_husky_demo

14

Jack Lafiandra, Cameron Pepe, Tyler Lee

CS 2699 - Husky Robotics Research

Conclusion
Collectively each of our individuals nodes connects and accomplishes the task set out at the
beginning of the semester. We have learned quite about about the ROS framework,
publishing and subscribing, the Husky hardware, simulation, speech libraries, OpenCV image
processing, and manipulating the Konova arm. We have all created ROS packages which run
scripts we have each made.

As with any project, the horizon has grown and there is definitely improvements and upgrades
to make. While we accomplished our goal of performing all the beginner tasks and well into
the intermediate, there is plenty of knowledge to be learned from the advanced category
which we were only able to discuss theoretically. Movement of the robot would also be a
huge addition and while it didn’t fall under any of our jurisdictions, it would greatly contribute
to the humanization element of the objective.

15

